Anomalous Dynamic Roughening of Cu Surfaces During Oxidation

G.-W. Zhou, D. D Fong, P. M. Baldo, J. E. Pearson, R. C. Birtcher, J. A. Eastman Materials Science Division, Argonne National Laboratory

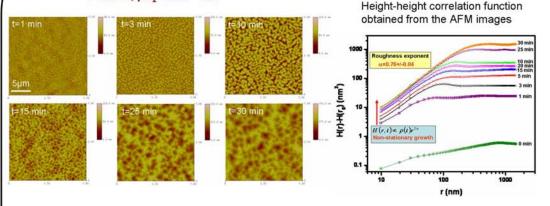
Motivation

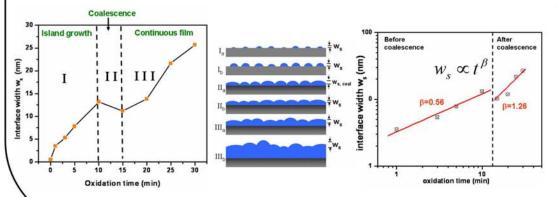
Surface roughening is a widespread phenomenon that occurs under far-from-equilibrium conditions:

- > thin film growth: deposition
- > Surface reaction : oxidation

Objective:

Apply dynamic scaling theory to understanding the evolution of oxide surface morphology --- insight into the oxidation mechanism


Experimental approach


- 1.Annealed at 700°C in Ar-2%H₂ for 2 hours: to remove native oxide and improve the surface quality
- 2. Oxidized at 250°C in pO₂=5×10⁻²
 Torr as a function of time
- 3. Characterization of surface morphology at RT using atomic force microscopy (AFM)

Accomplishments

Oxidation of (001)Cu as a function of time T=250°C, pO₂=5×10⁻² Torr

Findings:

- Anomalous dynamic roughening: time dependence of the surface roughening
- \succ Coalescence of the oxide islands leads to a change of dynamic exponent β
- Oxygen surface diffusion controls surface dynamics before island coalescence
- ➤ Lattice diffusion of Cu⁺across the oxide layer does not account for the surface dynamics after the island coalescence

Future directions

Dynamic scaling roughening approach to gas-solid interface:

- >Oxide reduction
- Quantitative connection between surface reactivity and surface roughness

Solid-liquid interfaces: chemically tailed AFM tips

- >Passivation/corrosion in aqueous conditions
- >dissolution behaviors of metals

